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described. In one example employing these aspects, at least
one computing device can map an alias token to an alias
code comprising a plurality of alias code segments. Each of
the alias code segments is based at least in part on a set of
orthogonal codes. Also, each of the alias code segments
corresponds to a segment of the alias token. A revocation
code is based at least in part on a plurality of revoked alias
codes. One of the alias code segments and a corresponding
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GROUP SIGNATURES WITH
PROBABILISTIC REVOCATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is the 35 U.S.C. § 371 national stage
application of PCT Application No. PCT/US2016/052171,
filed Sep. 16, 2016, where the PCT claims priority to U.S.
Provisional Application No. 62/220,650, filed on Sep. 18,
2015, both of which are herein incorporated by reference in
their entireties.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
Grant Nos. 1314598, 1265886, and 1431244, awarded by
the National Science Foundation. The government has cer-
tain rights in the invention.

BACKGROUND

Authentication can enable a sender to provide trustworthy
proof of identity and origination to communication partners,
for example, with a verifiable signature. This is an important
security attribute for current applications that rely on elec-
tronic communications over insecure or public networks.
The sender’s identity should be protected for some applica-
tions while maintaining verifiable proof of identity and
origination. Group signatures (GSs) can provide such pri-
vacy-preserving authentication (PPA). A wide variety of
applications use PPA, including safety applications for
vehicular networks, identity escrow schemes, anonymous
credential systems, remote attestation of computing plat-
forms, and device-to-device communications in the Internet-
of-Things (IoT) paradigm. However, modern GS schemes
have limited practical value for use in large networks. For
example, current GS schemes use deterministic revocation,
going through a revocation list and checking whether any of
the revoked tokens in the revocation list correspond to a
received signature. These schemes have high computational
complexity of their revocation check procedures when there
are a large number of revoked keys.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better
understood with reference to the following drawings. The
components in the drawings are not necessarily drawn to
scale, with emphasis instead being placed upon clearly
illustrating the principles of the disclosure. In the drawings,
like reference numerals designate corresponding parts
throughout the several views.

FIG. 1 is a graph that shows example false alarm prob-
abilities for numbers of iterations performed, according to
various examples described herein.

FIG. 2 is a graph that shows example false alarm prob-
abilities for numbers of bits in each segment of an alias
token, according to various examples described herein.

FIG. 3 is a graph that compares example computational
overhead for numbers of revoked private keys to other
schemes, according to various examples described herein.

FIG. 4 is a graph that compares example communication
overhead for numbers of revoked private keys to other
schemes, according to various examples described herein.
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FIG. 5 is a graph that compares an example average
message loss ratio for numbers of messages received per
broadcast interval to other schemes, according to various
examples described herein.

FIG. 6 illustrates an example of a networked environment
having a group management system and two computing
environments connected via a network.

FIGS. 7-10 are example flowcharts illustrating function-
ality implemented by components of the networked envi-
ronment, according to various examples described herein.

DETAILED DESCRIPTION

The present disclosure relates to using group signatures
with probabilistic revocation (GSPR) techniques. As dis-
cussed above, current GS schemes use deterministic revo-
cation, going through a revocation list and checking whether
a received signature corresponds to any of the revoked
tokens identified in the list. These schemes have high
computational complexity of their revocation check proce-
dures when there are a large number of revoked keys. As
device to device communications in the Internet-of-Things
(IoT) paradigm expands and more applications use PPA, the
revocation bottleneck of current GS schemes using deter-
ministic revocation becomes more problematic. However,
embodiments described herein include an authentication
scheme using GSPR, which is capable of greater scalability
with regard to revocation.

GSPR’s revocation check procedure does not produce
deterministic results, but instead produces probabilistic
results, which may include false positive (i.e., false alarm)
results but no false negative results. Here, a false negative
result refers to an instance in which the revocation check
fails to detect that the revocation token associated with the
received signature is included in the revocation list, or
incorrectly determines that the revocation token is not
included in the revocation list. A false positive result refers
to an instance in which the revocation check incorrectly
determines that the revocation token is included in the
revocation list. GSPR includes a procedure that can be used
to iteratively decrease the probability of false alarms. The
use of probabilistic revocation rather than deterministic
revocation enables GSPR to address the revocation bottle-
neck of GSs. In this discussion, entities involved in group
authentication include a signer, a verifier, and a group
manager.

Much of the computational efficiency of the GSPR revo-
cation check procedure is made possible by the use of alias
codes. Each alias code can be a vector of +1s and —1s with
desirable cross-correlation properties, and each alias code
can be mapped to an alias token included in each signature.
A signer sends a message with a signature including the alias
token. The group manager creates a revocation code by
adding all of the alias codes mapped to revoked alias tokens,
and then distributes this to the verifiers. The verifier can
perform the revocation check procedure by first mapping the
signature’s alias token to an alias code, and then computing
the cross correlation of the alias code and the revocation
code. Note that the verifier is able to check whether a
particular alias code is included in the revocation code using
a cross-correlation operation, and thus avoids the burden of
legacy GS schemes in which the verifier needs to check each
revocation token in the revocation list. Because of the
probabilistic nature of the revocation check procedure, its
result is not guaranteed to be correct with certainty, but only
with a certain probability.
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According to one example, a computer-implemented
method can include receiving a signature including an alias
token. Next, the alias token can be mapped to an alias code
comprising a plurality of orthogonal alias code segments. A
revocation code is received, The revocation code is a sum of
at least one revoked alias code. The revocation code com-
prises a plurality of revocation code segments. The plurality
of revocation code segments correspond to the plurality of
alias code segments. A revocation status of the alias token is
probabilistically determined based at least in part on at least
one of the alias code segments and a corresponding at least
one of the revocation code segments.

Another example includes a system with a computing
device and instructions executable in the at least one com-
puting device. When executed, the instructions cause the
computing device to perform a number of actions. The
computing device determines a set of orthogonal codes. An
alias token is determined to be a revoked alias token. The
alias token is separable into a plurality of alias token
segments of a predetermined number of bits. The plurality of
alias token segments are mapped to a corresponding plural-
ity of alias code segments. These alias code segments are
based at least in part on the set of orthogonal codes. The
computing device generates an alias code by concatenating
the plurality of alias code segments. A revocation code is the
sum of a plurality of revoked alias codes including the
revoked alias code.

In a further example, a system includes a computing
device and instructions executable in the at least one com-
puting device. The computing device receives a signature
including an alias token. The alias token is mapped to an
alias code comprising a plurality of alias code segments.
Each of the alias code segments corresponds to a segment of
the alias token and is based on a set of orthogonal codes. The
computing device also receives a revocation code. The
revocation code is based on a plurality of revoked alias
codes. The computing device performs a cross-correlation of
one of the alias code segments with a corresponding seg-
ment of the revocation code.

Moving to the figures, FIGS. 1-5 are discussed with
reference to some of the examples discussed below.

FIG. 6 illustrates a networked environment 100 having a
group management system 103, a computing environment
106, and a computing environment 109, each connected to
a network 112. The components of the networked environ-
ment 100 can be utilized to provide authentication using
group management with probabilistic revocation.

The network 112 can include, for example, the Internet,
intranets, extranets, wide area networks (WANSs), local area
networks (LLANs), wired networks, wireless networks, other
suitable networks, or any combination of two or more such
networks. For example, the networks can include satellite
networks, cable networks, FEthernet networks, telephony
networks, and other types of networks.

The group management system 103 can represent a group
manager, and can include, for example, a server computer or
any other system providing computing capability. Alterna-
tively, the group management system 103 can include a
plurality of computing devices that are arranged, for
example, in one or more server banks, computer banks, or
other arrangements. The group management system 103 can
include a grid computing resource or any other distributed
computing arrangement. The computing devices can be
located in a single installation or can be distributed among
many different geographical locations. The group manage-
ment system 103 can also include or be operated as one or
more virtualized computer instances. For purposes of con-
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venience, the group management system 103 is referred to
herein in the singular. Even though the group management
system 103 is referred to in the singular, it is understood that
a plurality of group management system 103 can be
employed in the various arrangements as described above.
Each of the computing environments 106 and 109 can
include similar elements.

The group management system 103 or devices comprising
the group management system 103, the management system
106 and the management system 108 can include at least one
processor circuit, for example, having a processor and at
least one memory device, both of which couple to a local
interface, respectively. The device can include, for example,
at least one computer, a mobile device, smartphone, com-
puting device, or like device. The local interface can include,
for example, a data bus with an accompanying address/
control bus or other bus structure. Stored in the memory
device are both data and several components that are execut-
able by the processor.

In particular, the components executed on the manage-
ment system 103 can include a data store 115. Functions can
be stored in the data store 115 or otherwise in its memory,
including a keygen function 116, a join function 118, a
revoke function 121, an open function 124, and other
functionalities. The functionalities stored in the data store
115 can also be referred to as software components, algo-
rithms, programs, or instructions executable by the group
management system 103. The data store 115 can also include
group manager secret 128, group public key 131, registra-
tion list 134, revocation token 137, revocation code 140,
among other data items. While the items in the data store are
sometimes referred to in the singular for clarity, they can be
representative of many such data items.

To begin, a security parameter parameter A can be in the
set of natural numbers N . A bilinear group pair (G, G ,)
can have an isomorphism 1 from G , to G ,. Z *,, can be the
set of integers modulo p, from which alias tokens can be
taken. Z *, can be mapped to C , using a mapping function
such that ¥ :Z * ,—C . Each element in € , can be an alias
code which can be a vector of +1s and —1s of a certain
length. H, and H, can be collision resistant hash functions
treated as random oracles where H,:{0, 1}*—Z*, and
H_:{0, 1}*—G ,>. With these concepts in mind, the follow-
ing functions of GSPR can be described.

The keygen function 116 can be utilized to generate the
group manager secret(s) 128 and public key(s) 131. The
keygen function 116 can select a generator

R
g2« Qo

where

T=

represents a random selection. The keygen function 116 can
then use isomorphism 1 to set g,=\(g,) such that g, is a
generator of G ;. Next, the keygen function 116 can select

y &z

P>
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and compute Wk:gzyk, Vke[0, m]. Note that w,=g,. The
group public key 131 can be gpk=(g,, g,, W;, W,, . . . W,,).
The group manager secret 128 held by the group manage-
ment system 103 can be given by gms=y. The output of this
algorithm can be the group public key 131 and the group
manager secret 128.

The join function 118 can be utilized to add a signer to a
group, for example by adding an entry for the signer in the
registration list 134 corresponding to the group. The join
function 118 can also generate a set of alias tokens, as well
as a secret key 154 and a revocation token 137 correspond-
ing to the set of alias tokens. For example, the join function
118 can select a random selection from the set of integers
modulo p,

*

y‘-<—Zp

and compute the set of m alias token(s) 157 such that each
alias token x,, in a set of alias tokens X, can be the result of
a hash function H_(y,, k), that can be a function of the
random selection from the set of integers modulo p, and k is
a set of integers from 1 to m such that X, ={x,,:x,,=H.(y,, k),
VkE[1, m]}. The revocation token 137 can be grt,=X;, and
the entry in the registration list 134 can be reg,=X,.

Next, the join function 118 can compute a polynomial
having variable y and each alias token in the set of alias
tokens. For example, m=II,_,"(y+X,,). Further, the join
function 118 can generate the secret key 154 based on the
random selection from the set of integers modulo p, the
polynomial, and the generator of one of the bilinear group
pairs. For example, the secret key 154 can be gsk,=(A,, y,),
where A, =g, '™

The revocation token 137 can be used to revoke the set of
alias tokens corresponding to the signer’s secret key. The
sign function 151 can perform signature generation. While
the secret key(s) 154 and alias token(s) 157 are shown in a
data store 148 of the computing environment 106, they can
also be stored in the data store 115.

The revoke function 121 can be utilized to update the
revocation code 140, for example, when a particular alias
token or set of alias tokens 157 is determined to be com-
promised. The revocation code 140 can be utilized by the
computing environment 109 (e.g. the verifier), to check
whether a received signature uses a revoked token, as will be
discussed. The revoke function 121 can add revoked alias
tokens to the revocation code 140 such that the computing
environment 109 can probabilistically determine whether a
signature is using a revoked token by utilizing the revocation
code 140.

The revoke function 121 can update the revocation code
140 by mapping a revoked alias token 157 to a correspond-
ing alias code 167. The alias code 167 can be a column
vector having a certain number of elements, each of which
can be a +1 or a —1. The revoke function 121 can add the
alias code 167 to the revocation code 140, which can also be
a column vector having a certain number of elements
resulting from adding a number of revoked alias codes 167.
If multiple alias codes 167 are to be added to the revocation
code 140, each of the alias codes 167 can be added to the
revocation code 140 in turn, or the alias codes can be first
added to each other, and the resulting column vector of -1s
and +1s can be added to the revocation code 140. In the case
that the alias code 167 is the first code, then the revocation
code 140 can be the same as the alias code 167. Thus the
revocation code 140 can be calculated as the sum of a
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6

number of revoked alias codes. Each revocation token 137
can correspond to a secret key 154. Each secret key 154 can
correspond to a set of alias tokens 157, and each revocation
token 137 can be used to map the set of alias tokens 157 to
a corresponding set of alias codes 167, each of which can be
added to the revocation code 140.

The open function 124 can be utilized to identify a signer
of a signature on a message. The group management system
103 can search the registration list 134 to find the signer that
generated the signature. For example, the registration list
134 can hold the set of alias tokens generated by the join
function 118 and corresponding to the secret key 154 of the
signer, and can be used to identify the signer by extracting
an alias token from a message and finding the entry in the
registration list 134 that has the alias token.

The computing environment 106 can represent a signer
and can be used by applications or devices that use PPA. The
computing environment 106 has the data store 148, which
stores data including the sign function 151, the secret key
154, and the alias token 157 among other items. The alias
token 157 can include a set of alias tokens 157 generated
based on the secret key 154. The computing environment
106 can send a message with a signature including the alias
token 157.

The sign function 151 can be utilized to generate a
signature on a message, the signature having the alias token
157 embedded or included. The sign function 151 can use
the group public key 131, the secret key 154, and the alias
token 157 to generate the signature with the alias token 157
on a message that the computing environment 106 (e.g. the
signer) communicates to the computing environment 109
(e.g. the verifier). To this end, the sign function 151 can
receive the parameter y, from the group management system
103, which can be a random selection from the set of
integers modulo p,

wiz

*

P>

and compute the set of m alias token(s) 157 such that each
alias token x,, in a set of alias tokens X, can be the result of
a hash function H(y,, k) such that X={x,.:x,=H.(y,, k),
VkE[1, m]}. Next, the sign function 151 can calculate
values to include in a tuple. The tuple can include an ordered
list of finite elements that are calculated based on the
polynomial mt=II(y+x,,), and can further include the alias
token x;.

The tuple can, for example, be (A,, B,, C,;, X,;), which can
be generated based on by selecting some value of k&1, m].
A, can be calculated by the group management system 103
as A,/~g, "™ and communicated to the computing environ-
ment 106, for example, with the secret key 154. The
computing environment 106 can calculate elements given by
B,=g,"=II,_," w,*, and Cl.k:g2“f(YJ"“"):II].:O”’"1 ijf. The
computing environment 106 (e.g. the signer) can use a
particular k to sign signatures in a time interval. After the
interval, the alias token corresponding to that k can be
discarded. When the signer exhausts all alias tokens, the
signer can send a request to the group management system
103 and the join function can be run again to fetch a new
secret key and compute a set of new alias tokens. Next, the
signature of knowledge (SPK) can be calculated using the
Fiat-Shamir heuristic method. The sign function 151 can, for
instance, compute values T,=u®, T,=Av, T,=Bf, T,=C,°,
a challenge c=H_(gpk, M, x,,, T;, T5, T5, T,, R;, R,, R;) and
responses, s, =r,+ca, sg=rp+cf}, and s;=rs+cd. The output of
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the sign function 151 can be a signature o that has the alias
token x,;, embedded in it, as well as additional values that can
be used in the verification process. For instance the signature
can be 0=(X;, Ty, T,, Ts, Ty, ¢, 5, S, S5)-

If the computing environment 106 sends request to join as
a member of a group associated with the group management
system 103, the group management system 103 can add an
entry in the registration list 134 corresponding to the group,
and generate the revocation token 137, while the computing
environment 106 receives the secret key 154 and/or a set of
the alias tokens 157 corresponding to the secret key. The
entry in the registration list 134 can include the set of alias
tokens 157 corresponding to the secret key sent to the signer,
and can be used to identify the signer, for example, using the
open function 124.

The computing environment 109 can represent a verifier.
The computing environment 109 has the data store 158,
which stores data including the revocation check 161 and the
alias code 167, among other data items. The revocation
check 161 can be performed, for example, in response to the
computing environment 109 (e.g., the verifier) receiving a
message from the computing environment 106 (e.g., the
signer). The message can have a signature that includes the
alias token 157. The revocation check 161 can obtain the
group public key 131 and the revocation code 140 from the
group management system 103 or another source. In some
instances, any of these items can be stored in the data store
158. The inputs to the revocation check 161 can include the
alias token 157, x,,, embedded in the signature o, and the
revocation code 140, RC.

Through the revocation check 161, the computing envi-
ronment 109 can check whether the alias token 157 has been
revoked. The alias token 157 can be extracted from the
signature and can be mapped to a corresponding alias code
167, which can be a column vector having elements that are
each positive one or negative one. The revocation check 161
can compute the alias code 167 as s,,=F (x,;), where s, is a
column vector of length 1 of samples of +1s and -1s. The
revocation check 161 will output invalid revocation check if
x=t, where

1
shRC,

227

where s,,” is the transpose of s, and T is a pre-determined
threshold. Otherwise, the revocation check 161 will output
valid.

In some embodiments, the revocation check 161 can be
run for segments of the alias code 167 in succession. In this
case, the alias token 157 can be divided into multiple
segments. Each segment of the alias token 157 can be
mapped to a corresponding segment of the alias code 167.
These segments can each be orthogonal codes. The orthogo-
nal codes are concatenated to form the complete alias code
167. Thus, the alias code 167 can be a piecewise-orthogonal
code comprising a number of orthogonal codes generated
based on corresponding segments of the alias token 157.

For instance, a set of 2%« orthogonal codes, denoted by C _,
can be generated where each orthogonal code in €, has
length 2% Each orthogonal code in C, can be retrieved
using a b,-bit index. The alias token 157 having b, bits (alias
token x,, can be in the set Z*,)) can be divided into d
segments each of length b, bits, such that d-b,<b,<(d+1)b,.
In this way, the segments of the alias token 157 can be
utilized as the b,-bit index to retrieve orthogonal codes in the
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set of orthogonal codes € .. Bach of these d orthogonal
codes retrieved from the d segments of the alias token 157
are segments of the alias code 167, and can be concatenated
to generate the alias code 167. For example the d orthogonal
codes, s, , Yj€[1, d], can be concatenated to generate the
alias code s,;.

The revocation code 140 can be generated by adding or
summing the alias codes 167. When the alias codes 167 are
generated from orthogonal code segments of length 2%, the
length of the resulting revocation code 140 is 1=d-2”. Such
a revocation code 140 has d segments, and can be the same
length as each alias code 167. The group manager declares
the two public parameters C | and F_, such that the set of all
possible alias codes C ,~C %, and the mapping function F
Z*,—C , is segment-wise indexing.

When the revocation code 140 is generated using the
revoke function 121, each segment of the revocation code
can be generated by a summation of the corresponding
segments of the revoked alias codes. Hence, the generated
revocation code 140 also has d segments, represented by
RC, for all j&[1, d]. Note that due to the property of
orthogonal codes, the cross-correlation of a revocation
code’s segment and an orthogonal code (e.g. an alias code
segment) results in O if the revocation code was not gener-
ated by the orthogonal code, or results in an integral multiple
of 1 if the revocation code 140 was generated using the
orthogonal code.

Having received a signature with alias token 157, the
verifier can run the revocation check 161 for each of the d
segments. However, to minimize the computational over-
head, the verifier can choose to run the revocation check 161
for any number of iterations from 1 to d iterations, each
iteration increasing the certainty of the revocation check
161.

The computing environment 109 can also include a sig-
nature check 163, which in some cases can be performed
before the revocation check 161. The signature check 163
determines whether the signature on the message is an
honest signature. For example, the signature check 163 can
check the correctness of a challenge based on the Fiat-
Shamir heuristic method such as ¢ < H_ (gpk, M, x,,, T, T,
T,, T, R, R,, R,). This can involve computing (&, V)=H,
(gpk, M, %), and calculating their images in G, ie,
u=(0) and v=p(V). Ry=u™T, ™%, Ry=e(v, T;)"e(g,, g.)"e
(Ty, T5)7%, Ry=e(gy, T5) e(p(wy)g,™, T,)7F. If the chal-
lenge equation holds, signature check 163 outputs valid;
otherwise, it outputs invalid.

Moving to FIG. 7, shown is a flowchart illustrating one
example of the join function 118. Starting in box 203, the
join function 118 can generate multiple alias tokens 157.
Each of the alias tokens 157 can have a predetermined
number of bits, and can be divided into a number of
segments. Fach alias token segment can have a number of
bits. The total number of segments multiplied by the number
of bits in each alias token segment can be less than or equal
to the predetermined number of bits in each of the alias
tokens 157.

Next, in box 206, the join function 118 can generate the
secret key 154 corresponding to the alias tokens 157. The
secret key 154 and the alias tokens 157 can be generated by
the group management system 103 and sent to the comput-
ing environment 106, or in some embodiments, they can be
generated in conjunction with the computing environment
106. The join function 118 can further generate the revoca-
tion token 137 and add an entry for the signer corresponding
to the computing environment 106 in the registration list
134. Thereafter, the join function 118 can end.
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Now considering FIG. 8, shown is a flowchart illustrating
one example of the sign function 151. The computing
environment 106 can perform the sign function 151. Starting
in box 209, the sign function 151 can sign a message using
the secret key 154. Moving to box 212, the sign function 151
can generate a signature with one of the alias tokens 157. In
some embodiments, the alias token 157 can be chosen based
on a predetermined time interval. After the predetermined
time interval, the alias token 157 corresponding to that time
period can be discarded. Generating the signature having the
alias token 157 can also include generating part of the
signature using the Fiat-Shamir heuristic method.

Moving to box 215, the sign function 151 can send the
message with the signature having the alias token 157 to a
verifier. For example, the computing environment 106 can
send the message with the signature having the alias token
157 to the computing environment 109 for verification. In
some cases the message can be sent in response to a request
from the computing environment 109 or functionality
executed by the computing environment 109. The message
can include any information that may be communicated
between a signer and a verifier. Thus, the message can be
used where PPA is used, including by applications or device-
to-device communications.

With reference to FIG. 9, shown is a flowchart illustrating
one example of the revoke function 121. The revoke func-
tion can be performed by the group management system
103. Starting in box 216, the revoke function 121 can
determine that an alias token 157 is revoked. The revoke
function 121 can determine that an alias token 157 is
revoked in response to determining that the alias token 157
is compromised, or that the alias token 157 is expired. In
some embodiments, the revoke function 121 can received
data indicating that the alias token 157 is expired, compro-
mised, or otherwise revocable.

Next, in box 218, the revoke function 121 can map the
revoked alias token 157 to the corresponding alias code 167.
The alias token 157 can have a number of segments, each
alias token segment having a number of bits. The corre-
sponding alias code 167 can have the same number of
orthogonal segments as the number of segments of the alias
token 157. Each alias code can be a vector of +1s and -1s
with desirable cross-correlation properties.

In box 221, the revoke function 121 can generate the
revocation code 140 by adding the alias code 167 to an
existing set of revoked alias codes in the revocation code
140. Where there are no existing revoked alias codes, the
alias code 167 can be the revocation code 140. Thereafter the
revoke function 121 can end. The revocation code 140 can
be considered public information for revocation checks and
verification, and can be stored and made available using the
group management system 103 or otherwise.

FIG. 10 shows a flowchart illustrating one example of the
revocation check 161. The revocation check 161 can be
performed by the computing environment 109 as part of a
verification procedure. Starting in box 251, the revocation
check 161 can extract the alias token 157 from the signature.
The signature can be received by the computing environ-
ment 109 along with a message from the computing envi-
ronment 106. The alias token 157 can be used to validate the
signature. In some embodiments the signature can be a tuple,
and the alias token 157 can be an element in the tuple. In
other embodiments, the alias token can be otherwise
included with or embedded in the signature. Once the alias
token 157 is obtained or extracted from the signature, the
revocation check 161 proceeds to box 254.
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Next, in box 254, the revocation check 161 maps the alias
token 157 to the alias code 167. The alias code 167 can be
a column vector having elements that can each be positive
one (+1) or negative one (-1). The alias token 157 can be
divided into multiple segments, and an orthogonal code can
be generated corresponding to each segment of the alias
token 157. Each orthogonal code can be retrieved using the
alias token segment as an index. These orthogonal codes can
be concatenated to form the complete alias code, which can
be referred to as a piecewise-orthogonal code, meaning each
segment of the alias code can be an orthogonal code. In some
cases a set of orthogonal codes can be generated or received
for this purpose, for example, a set of orthogonal codes can
be received from the group management system 103 or a
public source.

For example, the alias token 157 can be the four-bit token
{1101}. The four-bit token {1101} can be divided into two
alias token segments, {11} and {01}, each segment being
two bits. An orthogonal code of positive ones (+1s) and
negative ones (—1s) can correspond to each two-bit alias
token segment. For example, a first alias token segment {11}
of the alias token 157 can correspond to {[+1][-1][-1][+1]}
and its second alias token segment {01} can correspond to
{[+1][-1][+1][-1]}. In some cases, a set of orthogonal codes
can be generated having at least two orthogonal codes for
each bit of the alias token segment, here 2°=4 orthogonal
codes in the set, such that the alias token segment can be any
of {00}, {01}, {10}, or {11}, and be mapped to a orthogonal
code in the set. Note that where multiple alias tokens are
considered, each alias token (here the four bit alias token)
can be unique. However, each alias token segment is not
necessarily unique. For example, another alias token {1111},
unique from the four-bit token {1101}, can share similar
alias token segments. Hach contains the two-bit segment
{11}.

Thus {[+1][-1][-1][+1]} is a first alias code segment of
the alias code 167 corresponding to the first alias token
segment {11}, and {[+1][-1][+1][-1]} is a second alias code
segment of the alias code 167 corresponding to the second
alias token segment 01. The complete alias code 167 cor-
responding to the alias token can be formed by concatenat-
ing these alias code segments into a piecewise-orthogonal
code {[+1][-1][-1][+1][+1][-1][+1][-1]}. After the alias
token 157 and/or alias token segments of the alias token 157
are mapped to corresponding alias codes, the revocation
check 161 can move to box 257.

In box 257, the revocation check 161 determines a num-
ber of iterations to perform. The number of iterations can be
set by a group manager, or calculated based on certain
factors. For example, each iteration will take some compu-
tation to perform, so the number of iterations can be chosen
based on a desired level of computational overhead, or a
desired computation or processing time. Each iteration can
result in a false positive revocation of the alias token but
cannot result in a false negative revocation of the alias token.
Stated another way, each iteration can result in a certain
determination that the alias code is not revoked (e.g. because
there are no false negatives), or an uncertain determination
that the alias code is revoked (e.g. because false positives are
possible). Each iteration increases the confidence in the
result of the revocation check 161. This iteratively decreases
the probability of false positives of the revocation check
161. Thus, the number of iterations can also be chosen or
determined based on a desired probability of false positives.
The probability of false positive or probability of false alarm
can be can be calculated based at least in part on the number
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of revoked private keys, the number of bits in each alias
token segment, and the number of iterations performed.

If the verifier runs the revocation check 161 for a itera-
tions, then the length of the alias code that has to be
processed can be |, =a-2%, and probability of false alarm can
be Pfazntl’"/ ™. Note that in this case the computational
overhead of the revocation check 161 can be directly pro-
portional to length of an alias code. There is a tradeoff
between probability of false alarm and the computational
cost of the revocation check 161. One possible strategy is to
construct the revocation code 140 in such a manner that
minimizes probability of false alarm for a given length of the
alias and for a given number of revoked alias tokens (i.e.,
mn,) by selecting an optimal number of bits in an alias token
segment b,. Once the optimal value of b, is computed, the
ratio n, of the number of revoked alias tokens and the length
of one segment of the revocation code can be computed by
n~=mn,/2% This value can be readily derived as
n,~exp(-1)=~0.3679. However, mn, and 2°* are both integer
values, and hence to minimize P, the group manager can
select b such that

exp(—1) _mny

2 2bs

<3exp(—1)/2.

In the present example, the group manager can select two
iterations, and the revocation check 161 can move to box
260.

In box 260, the revocation check 161 can probabilistically
determine whether a segment of the alias code 167 is
revoked. Sometimes the alias code 167 can have a single
segment. To continue the example, the alias code 167 can be
the piecewise-orthogonal code {[+1][-1][-1][+1][+1]
[-1][+1][-1]}. The alias code has two orthogonal alias code
segments, {[+1][-1][-1][+1]} and {[+1][-1][+1][-1]}. The
revocation check 161 can cross correlate a first alias code
segment with a corresponding segment of the revocation
code 140. The segments can be considered in any order.

Because the revocation code 140 is a number of alias
codes added together, the revocation code 140 can have the
same number of segments and the same segment lengths as
each alias code 167. Further, each segment of the revocation
code 140 corresponds to each segment of the alias code 167.
In this example, two alias tokens, {1111}, and {1010}, are
determined to be revoked. The revoked alias token {1111}
can be mapped to a first revoked alias code {[+1][-1][-1]
[+1][+1][-1][-1][+1]}. The revoked alias token {1010} can
be mapped to {[+1][+1][-1][-1][+1][+1][-1][-1]}. These
alias codes can be added to form the revocation code 140,
which is {[+2][0][-2][0][+2][0][-2][0]}. Each orthogonal
segment of each alias code corresponds to a segment of the
revocation code 140. For example, the first four elements of
the first revoked alias code, {[+1][-1][-1][+1]}, corre-
sponds to the first four elements of the revocation code 140,
{[+21[0][-2][0]}.

Generally, the operation of the revocation check 161
proceeds to box 263 if the segment of the alias code is
calculated as not revoked. If the segment is calculated as
revoked, the revocation check 161 proceeds to box 266. To
continue the example, if the first alias code segment {[+1]
[-1][-1][+1]} of the alias code 167 can be cross-correlated
with the corresponding revocation code segment
{[+2][0][-2][0]} of the revocation code 140. The result of
this cross-correlation is 1, indicating that the segment is
revoked, and the revocation check 161 would proceed to box
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266. This is an example of a false positive or false alarm, as
the alias code 167 was not actually used in forming the
revocation code 140.

In box 263, the revocation check 161 determines that the
alias token 157 corresponding to the alias code 167 is not
revoked and can end with a valid authentication. Because
GSPR does not result in a false negative result for alias code
segments, if an alias code segment is calculated as not
revoked in box 260, the revocation check 161 can immedi-
ately determine that an alias token is not revoked, and the
result of authentication is valid.

In box 266, the revocation check 161 can determines
whether all iterations are performed. Generally, if all itera-
tions are performed, the revocation check 161 proceeds to
box 269, where the revocation check 161 determines that the
alias token 157 is revoked, resulting in an invalid authenti-
cation. In this example, if the number of iterations deter-
mined in box 257 is one iteration, then the revocation check
161 would move to box 269. In this example, the result is a
false positive invalid authentication.

If all iterations are not performed, the revocation check
161 proceeds to box 269. In the present example, the number
of iterations is set to two, so the revocation check 161
proceeds to box 269 and determines whether all segments of
the alias code 167 have been checked. If all segments have
been checked, the revocation check 161 proceeds to box 269
where the revocation check 161 determines that the alias
token 157 is revoked. If all segments are not checked,
revocation check 161 proceeds to box 272.

In box 272, the revocation check 161 moves to the next
alias code segment. The next alias code segment can be the
any alias code segment of the alias code 167 that has not yet
been checked. This action can include incrementing a coun-
ter. It can also include selecting the next alias code sequen-
tially, according to a predetermined order, or according to a
random or pseudo-random selection. In the present example,
the only remaining alias code segment of the alias code 167
is {[+1][-1][+1][-1]}. Once the next alias code segment is
selected, the revocation check 161 proceeds again to box
260.

In this example, the second alias code segment
{[+1][-1][+1][-1]} of the alias code 167 can be cross-
correlated with the corresponding revocation code segment
{[+2][0][-2][0]} of the revocation code 140. This time, the
result of the cross-correlation is 0, indicating that the seg-
ment is not revoked. As discussed earlier, since GSPR
results in no false positives, the revocation check 161 can
determine that the alias token 157 is not revoked, and the
result of authentication is valid. Thereafter, the revocation
check can end.

The above-described examples of the present disclosure
are merely possible examples of implementations set forth
for a clear understanding of the principles of the disclosure.
Many variations and modifications can be made without
departing substantially from the spirit and principles of the
disclosure.

A number of software components are stored in the data
stores 115, 148, and 158, or otherwise in a respective
memory and are executable by a respective processor of
each of the group management system 106 and computing
environments 106 and 109. In this respect, the term “execut-
able” means that a program file, function, application, algo-
rithm, or instructions are in a form that can ultimately be run
by the processor. Examples of executable programs may be,
for example, a compiled program that can be translated into
machine code in a format that can be loaded into a random
access portion of the memory and run by the processor,
source code that may be expressed in proper format such as
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object code that is capable of being loaded into a random
access portion of the memory and executed by the processor,
or source code that may be interpreted by another executable
program to generate instructions in a random access portion
of the memory to be executed by the processor, etc. An
executable program may be stored in any portion or com-
ponent of the memory including, for example, random
access memory (RAM), read-only memory (ROM), hard
drive, solid-state drive, USB flash drive, memory card,
optical disc such as compact disc (CD) or digital versatile
disc (DVD), floppy disk, magnetic tape, or other memory
components.

The memory can include both volatile and nonvolatile
memory and data storage components. Volatile components
are those that do not retain data values upon loss of power.
Nonvolatile components are those that retain data upon a
loss of power. Thus, the memory may comprise, for
example, random access memory (RAM), read-only
memory (ROM), hard disk drives, solid-state drives, USB
flash drives, memory cards accessed via a memory card
reader, floppy disks accessed via an associated floppy disk
drive, optical discs accessed via an optical disc drive,
magnetic tapes accessed via an appropriate tape drive,
and/or other memory components, or a combination of any
two or more of these memory components. In addition, the
RAM may comprise, for example, static random access
memory (SRAM), dynamic random access memory
(DRAM), or magnetic random access memory (MRAM)
and other such devices. The ROM may comprise, for
example, a programmable read-only memory (PROM), an
erasable programmable read-only memory (EPROM), an
electrically erasable programmable read-only memory (EE-
PROM), or other like memory device.

Also, the processor may represent multiple processors
and/or multiple processor cores and the memory may rep-
resent multiple memories that operate in parallel processing
circuits, respectively. In such a case, the local interface may
be an appropriate network that facilitates communication
between any two of the multiple processors, between any
processor and any of the memories, or between any two of
the memories, etc. A local interface may comprise additional
systems designed to coordinate this communication, includ-
ing, for example, performing load balancing. The processor
may be of electrical or of some other available construction.

Although the join function 118, the revoke function 121,
the sign function 151, the revocation check 161, and other
various systems described herein may be embodied in
software or code executed by general purpose hardware as
discussed above, as an alternative the same may also be
embodied in dedicated hardware or a combination of soft-
ware/general purpose hardware and dedicated hardware. If
embodied in dedicated hardware, each can be implemented
as a circuit or state machine that employs any one of or a
combination of a number of technologies. These technolo-
gies may include, but are not limited to, discrete logic
circuits having logic gates for implementing various logic
functions upon an application of one or more data signals,
application specific integrated circuits (ASICs) having
appropriate logic gates, field-programmable gate arrays (FP-
GAs), or other components, etc. Such technologies are
generally well known by those skilled in the art and,
consequently, are not described in detail herein.

The flowcharts of FIGS. 7-10 show the functionality and
operation of an implementation of portions of the various
functions described herein. If embodied in software, each
block may represent a module, segment, or portion of code
that comprises program instructions to implement the speci-
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fied logical function(s). The program instructions may be
embodied in the form of source code that comprises human-
readable statements written in a programming language or
machine code that comprises numerical instructions recog-
nizable by a suitable execution system such as a processor
in a computer system or other system. The machine code
may be converted from the source code, etc. If embodied in
hardware, each block may represent a circuit or a number of
interconnected circuits to implement the specified logical
function(s).

Although the flowcharts of FIGS. 7-10 show a specific
order of execution, it is understood that the order of execu-
tion may differ from that which is depicted. For example, the
order of execution of two or more blocks may be scrambled
relative to the order shown. Also, two or more blocks shown
in succession in FIGS. 7-10 may be executed concurrently
or with partial concurrence. Further, in some embodiments,
one or more of the blocks shown in FIGS. 7-10 may be
skipped or omitted. In addition, any number of counters,
state variables, warning semaphores, or messages might be
added to the logical flow described herein, for purposes of
enhanced utility, accounting, performance measurement, or
providing troubleshooting aids, etc. It is understood that all
such variations are within the scope of the present disclo-
sure.

Also, any function or application described herein that
comprises software or code can be embodied in any non-
transitory computer-readable medium for use by or in con-
nection with an instruction execution system such as, for
example, a processor in a computer system or other system.
In this sense, the software may comprise, for example,
statements including instructions and declarations that can
be fetched from the computer-readable medium and
executed by the instruction execution system. In the context
of the present disclosure, a “computer-readable medium”
can be any medium that can contain, store, or maintain the
logic or application described herein for use by or in
connection with the instruction execution system.

The computer-readable medium can comprise any one of
many physical media such as, for example, magnetic, opti-
cal, or semiconductor media. More specific examples of a
suitable computer-readable medium would include, but are
not limited to, magnetic tapes, magnetic floppy diskettes,
magnetic hard drives, memory cards, solid-state drives, USB
flash drives, or optical discs. Also, the computer-readable
medium may be a random access memory (RAM) including,
for example, static random access memory (SRAM) and
dynamic random access memory (DRAM), or magnetic
random access memory (MRAM). In addition, the com-
puter-readable medium may be a read-only memory (ROM),
a programmable read-only memory (PROM), an erasable
programmable read-only memory (EPROM), an electrically
erasable programmable read-only memory (EEPROM), or
other type of memory device.

In addition to the examples provided above, further
examples utilizing group signatures with probabilistic revo-
cation can be performed, for example, using the group
management system 103 and the computing environments
106 and 109 or other computing devices. Such further
examples are discussed below.

Group signatures (GSs) is an elegant approach for pro-
viding privacy-preserving authentication. Unfortunately,
modern GS schemes have limited practical value for use in
large networks due to the high computational complexity of
their revocation check procedures. Described herein is a GS
scheme called the Group Signatures with Probabilistic
Revocation (GSPR), which significantly improves scalabil-
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ity with regard to revocation. GSPR employs the notion of
probabilistic revocation, which enables the verifier to check
the revocation status of the private key of a given signature
efficiently. However, GSPR’s revocation check procedure
produces probabilistic results, which may include false
positive results but no false negative results. GSPR includes
a procedure that can be used to iteratively decrease the
probability of false positives. GSPR makes an advantageous
tradeoff between computational complexity and communi-
cation overhead, resulting in a GS scheme that offers a
number of practical advantages over the prior art. Provided
is a proof of security for GSPR in the random oracle model
using the decisional linear assumption and the bilinear
strong Diffie-Hellman assumption.

1. As an Introduction

The notion of authentication is to enable a sender to prove
her identity to a distant communication partner and/or to
show that she is the origin of the transmitted data. This
security attribute is beneficial to most of today’s applications
that rely on digital communications over insecure networks.
In some applications, however, authentication is not suffi-
cient, and in addition to authentication, the sender’s privacy
should be protected—the combination of these two attri-
butes is often referred to as privacy-preserving authentica-
tion (PPA). PPA schemes are desirable in applications where
the verifiers should not learn the actual identity of the sender
(i.e., signer), and are willing to accept an authentication
artifact (i.e., signature) that is verifiably linked to an anony-
mous sender, knowing that the sender’s identity can be
revealed by a trusted third party, if disputes need to be
resolved. A wide variety of applications use PPA, including
safety applications for vehicular networks, identity escrow
schemes, anonymous credential systems, remote attestation
of computing platforms, and device-to-device communica-
tions in the Internet-of-Things (IoT) paradigm.

For deployment in large networks, PPA protocols can rely
on public-key cryptography. In public-key cryptosystem-
based PPA protocols, there are three entities that interact
with each other: signer, verifier, and group manager. The
roles of the signer and the verifier are obvious. The group
manager plays an important role. During the initialization
process, the group manager generates parameters, and cer-
tificates (e.g., public-key certificates) and the private signing
key of each group member. Most importantly, the group
manager has the ability to reveal the signer’s true identity if
a dispute needs to be resolved. PPA schemes can be broadly
categorized into two approaches: pseudonym-based signa-
tures (PSs) and group signatures (GSs).

In PSs, legacy public-key cryptosystems (e.g., RSA) are
used. The group manager provides the signer with a list of
pseudonyms and the corresponding private keys, public
keys, and public-key certificates. The signer creates a sig-
nature based on her pseudonym, and replaces her pseud-
onym with a new one periodically to preserve anonymity.
Although the PS approach is straightforward, it has a num-
ber of drawbacks. Because each pseudonym should be used
with its unique set of private and public keys and a certifi-
cate, key management and distribution become an onerous
burden in large networks.

GSs do not use public-key certificates, and hence do not
need a certificate distribution framework. In GS, each signer
is a member of a group, and she is provided with a private
key tuple by the group manager. Using this tuple, the signer
generates signatures without revealing her true identity to
the verifier. In the case of a conflict, the signature can be
“opened” by the group manager, and the identity of the
signer is revealed. The most practical GS schemes support
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verifier-local revocation (VLR). To perform VLR, the group
manager generates a revocation token for each signer (which
is a portion of the private key), publishes it in a revocation
list, and distributes the revocation list to the verifiers. To
check the revocation status of the private key used to
generate the received signature, the verifier performs the
revocation check procedure. This procedure involves going
through the revocation list, and checking whether any of the
revocation tokens contained therein can be mapped to the
received signature. This means that the computation time for
the revocation check procedure increases linearly with the
number of revoked private keys. Moreover, the computa-
tional cost of the procedure for each revocation token is
expensive. After a thorough and comprehensive analysis of
existing GSs, it was recently concluded that revocation
remains the major performance bottleneck of modern GS
schemes, and that further research can result in design
schemes offering better scalability with regard to revocation.

As described herein, a VLR GS scheme called Group
Signatures with Probabilistic Revocation (GSPR) is pro-
posed. As its name implies, the most striking attribute of
GSPR is that it supports probabilistic revocation. That is,
GSPR’s revocation check procedure does not produce deter-
ministic results, but instead produces probabilistic results,
which may include false positive (i.e., false alarm) results
but no false negative results. Here, a false negative result
refers to an instance in which the revocation check algorithm
fails to detect that the revocation token associated with the
received signature is included in the revocation list. GSPR
includes a procedure that can be used to iteratively decrease
the probability of false alarms. The use of probabilistic
revocation (instead of deterministic revocation) enables
GSPR to elegantly address the primary performance bottle-
neck of GSs—i.e., enable efficient revocation checking with
only a modest increase in the signature size. In fact, GSPR’s
revocation check time does not grow linearly with the
number of revoked keys.

The dramatic improvement in the computational effi-
ciency of the revocation check procedure is made possible
by the use of “alias codes”. Each alias code is a vector of +1s
and -1s with desirable cross-correlation properties, and each
alias code is mapped to an “alias token” (which is equivalent
to a revocation token in legacy VLR GS schemes) included
in each signature. The group manager creates a “revocation
code” (which is equivalent to a revocation list) by adding all
of the alias codes mapped to revoked alias tokens, and then
distributes this to the verifiers. The verifier performs the
revocation check procedure by first mapping the signature’s
alias token to an alias code, and then computing the cross
correlation of the alias code and the revocation code. Note
that the verifier is able to check whether a particular alias
code is included in the revocation code in a cross-correlation
operation, and thus avoids the burden of legacy GS schemes
in which the verifier iteratively checks each revocation token
in the revocation list. Because of the probabilistic nature of
the revocation check procedure, its result is not guaranteed
to be correct with certainty, but only with a certain prob-
ability.

The paper’s main contributions are summarized below.

A VLR GS scheme called Group Signatures with Proba-

bilistic Revocation significantly reduces the computa-
tional complexity of the revocation check procedure
compared to the prior art.

The concept of probabilistic revocation described herein

makes an advantageous tradeoff between computa-
tional complexity and communication overhead. This
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tradeoff enables GSPR to have significantly better

scalability in terms of revocation compared to the prior

art.

Also provided herein is a security analysis of GSPR in the
random oracle model using standard complexity
assumptions often used in evaluating legacy schemes.

The rest of this paper is organized as follows. Security
assumptions are provided in Section 2, and present the
model and security definitions in Section 3. Details of GSPR
are provided in Section 4, and analyze its security properties
in Section 5. A computational and communication overhead
analysis of GSPR is provided in Section 6. GSPR is dis-
cussed in the context of safety applications for vehicular
networks in Section 7.

2. Preliminaries

The proposed scheme is constructed in cyclic groups with
a computable bilinear map. Moreover, the security of the
proposed scheme is proved in the random oracle model
using the Decisional Linear (DLIN) assumption and the
g-Bilinear Strong Diffie-Hellman (BSDH) assumption. This
section includes an example review of definitions of bilinear
groups and of complexity assumptions.

Definition 1 (Bilinear Groups): (G,, G,) is called a
bilinear group pair, if there exists a group G ; and a bilinear
map e: G xG,—G , with the following properties:

1. G, G, and G, are multiplicative cyclic groups of

prime order p;

2. g, is a generator of G |, and g, is a generator of G ,;

3.4 is an efficiently computable isomorphism from G , to
G |, with }(g,)=g;

4. e is an efficiently computable bilinear map with the
following properties:

Bilinear: e(u®, v*)=e(u, v)**, VuEG |, v€G , and a, bE
Z*, where Z*, represents the set of integers
modulo p; and

Non-degenerate: e(g;, g,)=1.

When G ,=G ,, ¢y is an identity map. On the other hand,
when G ;=G ,, certain families of non-supersingular elliptic
curves can be used for efficient implementation of bilinear
groups, and { can be implemented by a trace map.

Definition 2 (DLIN Assumption): Given u,, u,, h, u,, u,”,
ZEG ,, where a, bEZ *,, as input for each probabilistic
polynomial time (PPT) algorithm <A, the probability with
which A is able to differentiate whether

Z =" or ZLGZ

is negligibly small. Here,

represents a random selection.

Definition 3 (BSDH Assumption): Given a (q+2)-tuple
(81, 855 & - - - gzyq) as input for each PPT algorithm A,
the probability that <4 outputs a pair (e(g,, g,)"™, x),
where xEZ * e

R
8202, g1 = ¥(g2),
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and

y Lz,

is negligibly small.
3. Model and Security Definitions

This section describes example algorithms that can make
up GSPR, and review the security properties of GSs.

Definition 4 (Group Signatures with Probabilistic Revo-
cation): It is composed of the following algorithms, which
can, for example, be performed or utilized by the group
management system 103, the computing environments 106,
or the computing environment 109.

KeyGen()h): With the security parameter, AEN, this
algorithm generates a group public key gpk, and a
group manager’s secret gms. Here, N represents the
set of natural numbers.

Join(gms, 1, m): To add the signer i €[1, n], where n is the
total number of signers in the network, as a member of
the group with the secret gms, this algorithm generates
a set of m alias tokens, x,,, VkE[ 1, m], a corresponding
secret/private key gsk, and a corresponding revocation
token grt,, and makes an entry into a registration list
reg,. The terms “secret key” and “private key” can be
used interchangeably.

Sign(gpk, gsk,, M): With the group public key gpk, and
the signer’s secret key gsk,, this algorithm generates
signature o with alias token x,, on message M.

Verify(gpk, RC, o, M): If both of the following sub-
algorithms produce an output value of valid, this algo-
rithm outputs the value valid; otherwise, it outputs the
value invalid.

SignCheck(gpk, o, M): With the group public key gpk
and a purported signature o on a message M, this
sub-algorithm outputs the value valid if o is an
honest signature on M; otherwise, it outputs the
value invalid.

RevCheck(RC, 0): With a revocation code RC and a
purported signature o, this sub-algorithm outputs the
value valid if the alias token x,, embedded in o is
determined to be unrevoked; otherwise, it outputs the
value invalid.

Revoke(grt;, RC): This algorithm updates the revocation
code RC using the revocation token grt; if the mem-
bership of signer i is to be revoked. Here, revoking the
membership of the signer is equivalent to revoking her
private key and revoking all of her alias tokens.

Open(reg, o, M): Given a valid signature o on a message
M, created by a signer i €[1, n], this algorithm outputs
the signer’s identity 1i.

The group manager can run KeyGen to set-up the group,
Join to add a signer to the group, Revoke to revoke a private
key of a signer, and Open to open a signature. The signer
runs Sign to sign a message, and the verifier runs Verify to
verify a signed message.

Three attributes of GSs are described in the following
discussion.

Correctness: This ensures the following properties.

Signature Correctness: This ensures that if a signature
is generated by an honest signer, the signature check
algorithm (i.e., SignCheck) outputs the value valid.

Identity Correctness: This ensures that if a signature is
generated by an honest signer, the group manager
correctly reveals the identity of the signer using the
signature open algorithm (i.e., Open).
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Revocation Correctness: This ensures that if a signature
is generated by an honest signer using an unrevoked
private key, the revocation check algorithm (i.e.,
RevCheck) outputs the value valid.

Anonymity: This property ensures that no party except the
group manager is able to identify the signer of a given
signature.

Traceability: This property indicates that no colluding set
of signers (even consisting of the entire group) can
create signatures that cannot be traced back to a signer
in the group, or signatures that cannot be traced back to
some member of the colluding set.

The revocation correctness property is not considered a core
security property in most GSs. However, it is an important
property to consider in evaluating GSPR, with respect to
other GS schemes. GSPR satisfies all of the security prop-
erties listed above with the exception of the revocation
correctness property. One of the intrinsic attributes of GSPR
that distinguishes it from all other GSs is that it satisfies the
revocation correctness property with a certain probability,
but not with certainty. GSPR exploits the computational
efficiency advantage of probabilistic algorithm to signifi-
cantly reduce the computation cost of the revocation check
procedure. Below, provided are example definitions of the
security properties mentioned above.

Definition 5 (Signature Correctness): It indicates that for
all A, n €N, all (gpk, gms) obtained by KeyGen, all (g sk,
grt,, reg,) obtained by Join for any i €[1, n], and all M &{0,
1}%

SignCheck(gpk,Sign(gpk,gsk, M),M)=valid.

Definition 6 (Identity Correctness): It indicates that for all
h,n €N all (gpk, gms) obtained by KeyGen, all (gsk,, grt,,
reg,) obtained by Join for any i €[1, n], and all M €{0, 1}*,

Open(reg,Sign(gpk,gsk; M),M)=i.

Definition 7 (Revocation Correctness): It indicates that for
all A, n €N, all (gpk, gms) obtained by KeyGen, all (gsk;,
grt,, reg,) obtained by Join for any i €[1, n], and all M &{0,
1}%

RevCheck(RC,Sign(gpk,gsk, M))=valid,

implies that the private key of the signer i is not revoked.

Definition 8 (Anonymity): It indicates that for each PPT
algorithm A , the advantage of 4 on winning the following
game is negligibly small.

Setup: The challenger runs KeyGen(Ah) and Join(gms, i,
m), ¥i €1, n]. He obtains gpk, gsk, and reg. He
provides the algorithm A with gpk.

Queries-Phase I: A queries the challenger about the
following.

a. Signing: A requests a signature on an arbitrary
message M for an arbitrary member i. The challenger
responds with the corresponding signature.

b. Corruption: A requests the secret key of an arbi-
trary member i. The challenger responds with the key
gsk;.

c. Opening: A requests the identity of the signer by
providing a message M and its valid signature o
created by signer 1 €[1, n|. The challenger responds
with the signer’s identity 1.

Challenge: A outputs a message M and two members i,
and 1, with the restriction that the corruption of i, and
i, have not been requested. The challenger chooses
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¢ 0,13,

and responds with the signature o™ on M* of member i,

Queries-Phase 11 (Restricted Queries): After obtaining the
challenge, A can make additional queries of signing,
corruption and opening, except the corruption queries
of i, and 1, and the opening query of the signature o*
on M*.

Output: A outputs a bit ¢' indicating its guess of ¢.

A wins the anonymity game if ¢'=¢. The advantage of
A is defined as IPr(¢'=¢)-4l.

Definition 9 (Traceability): It indicates that for each PPT
algorithm <A, the probability that 4 wins the following
game is negligibly small.

Setup: The challenger runs KeyGen(A) and Join(gms, 1,
m), ¥i €[1, n]. He obtains gpk gsk, and reg. He
provides A with gpk, and sets U as empty.

Queries: A queries the challenger about the following.
d. Signing: <A requests a signature on an arbitrary

message M for an arbitrary member i. The challenger
responds with the corresponding signature.

e. Corruption: A requests the secret key of an arbitrary
member i. The challenger adds i to U, and responds
with the key gsk,.

Output: A outputs a message M* and a signature o*.
A wins the game if:

1. SignCheck(gpk, o*, M*)=valid;

2. o* is traced to a member outside of U or the trace is

failure; and

3. A did not obtain o* by making a signing query on M*.
4. Proposed Scheme: GSPR
4.1 Motivation for Probabilistic Revocation

In the GSs supporting VLR, the group manager includes
a revocation token corresponding to each revoked private
key in a revocation list, and distributes the revocation list to
the verifier. In each VLR based GS scheme, there is an
associated implicit tracing algorithm which utilizes the
revocation token to link a signature to a revoked private key
using which the signature is generated. This implicit algo-
rithm uses several exponentiation and/or bilinear map opera-
tions which are computationally expensive. In the revoca-
tion check procedure, the verifier performs this implicit
tracing algorithm between the received signature, and each
revocation token in the revocation list. This means that the
computation time for the revocation check procedure of a
signature increases linearly with the number of revoked
private keys. Hence, the revocation check procedure
becomes the major bottleneck in the application of VLR
based GSs in real systems with large number of signers
along with possibility of large number revoked private keys.

As described herein, proposed is a VLR based GS, called
Group Signatures with Probabilistic Revocation (GSPR), in
which an alias token is embedded into the group signature
generated by a signer in such a way that it can be utilized for
the purpose of revocation check procedure. GSPR signifi-
cantly reduces the computation complexity of the revocation
check procedure by adopting two techniques. Firstly, it
reduces the computation cost of executing the implicit
tracing algorithm by using the alias tokens in generating
signatures. Secondly, it enables the verifier to check the
revocation status of an alias token in a single step, instead of
requiring the verifier to sequentially go through the revoca-
tion list and execute the implicit tracing algorithm for each
revocation token included in the revocation list.
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Specifically, the group manager issues a set of alias tokens
corresponding to a private key of the signer, and the signer
embeds an alias token in each of its generated signatures.
When the private key of the signer is revoked, all its
corresponding alias tokens are added to a revocation list.
Further, each alias token is mapped to an “alias code”. The
group manager performs sample-by-sample addition of all
the alias codes corresponding to the alias tokens in the
revocation list to generate one code called the “revocation
code”. The revocation code, instead of the revocation list, is
provided to the verifier. When the verifier receives a par-
ticular signature with a particular alias token, he generates
the alias code corresponding to the alias token. The verifier
computes the cross correlation of the alias code and the
revocation code. If the value of correlation exceeds a par-
ticular threshold, the verifier presumes that the alias code (of
the signature being verified) is used to generate the revoca-
tion code, and in turn concludes that the signature is invalid
because it is associated with a revoked alias token. Other-
wise, the verifier concludes that the signature is valid.

The motivation for using alias codes comes from direct-
sequence spread spectrum (DSSS) systems used in commu-
nications. DSSS is a modulation technique that enables the
receiver to remove undue interference and recover the
correct information from an aggregate of multiple signals
even when multiple transmitters send information simulta-
neously over a single channel. Information recovery is made
possible with the use of specially-crafted spreading codes.
4.2 Technical Details

For a given security parameter A=N , consider a bilinear
group pair (G |, G ,) with isomorphism 1. Consider H_:{0,
1}*—Z*, and H,:{0, 1}*—G ,* as collision resistant hash
functions treated as random oracles. Consider a set of alias
codes, € . The order of €, is p which is equal to the order
of Z *,. Each element in v,, is an alias code which is a vector
of +1s and -1s of length 1. Further, a mapping function can
be F:Z *,—~C , using which an alias token in Z *, can be
mapped to an alias code in C . The details of C , and F_ are
discussed in Section 5.4.1. G |, G, ¢, H,, H,, C  and F_ are
considered public knowledge. In the following paragraphs,
defined are example algorithms that make up GSPR. These
algorithms can refer to software or functionalities which can,
for example, be performed or utilized by the group man-
agement system 103, the computing environments 106, or
the computing environment 109.

KeyGen().): With the security parameter AEN | this algo-
rithm generates the group public key gpk and the group
manager’s secret gms through the following steps.

1. Select a generator

R
820Gy,

and set g,=\(g,) such that g, is a generator of G .
2. Select

y Lz,

and compute Wk:gzyk, Vk&[0, m]. Note that w,=g,.

The group public key is gpk=(g,, g,, W,, W, . . . w,,). The

secret belonging only to the group manager is given by

gms=y. The output of this algorithm is (gpk, gms).
Join(gms, i, m): This algorithm adds the signer i as a

member of the group with the group manager’s secret gms,
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and generates m alias tokens for signer 1, and a correspond-
ing secret key gsk,. This algorithm also generates a revoca-
tion token grt; for signer i, and an entry in the registration list
re g, using the following steps.

1. Select

R
y‘-<—Z;.

2. Compute the set of m alias tokens,

X={xgx g =H, (v, k) VRE[L,m]}, (6]

where k™ alias token of signer i is represented by x,,.
3. Compute wt=I1,_,™ (y+x,,), and calculate

U

Q).

In the unlikely case, if t,=0, restart from Step 1. For signer
i, the secret key is gsk,=(A,, y,), the revocation token is
grt=X,, and the entry in the registration list is reg,=X,. Note
that only the group manager has access to reg. The output of
this algorithm is (gsk,, grt,, reg,).

Sign(gpk, gsk, M):

The inputs to the signing algorithm are the group public
key gpk, the signer’s secret key gsk;, and the message to be
signed M €{0, 1}*. This algorithm generates a signature o
on M using the following steps.

1. Generate the following parameters.

(a) Compute the alias tokens X, using equation (1).

(b) Define m=TL_," (F+x,)=-2,c" ay", where
ag, ay, . . ., a, EL*, are the coefficients of the
polynomial z; with the variable y, and compute

4=

— g ], Ty ak
B=gy =1l g™ w k.

®

() For each x,EX, define m/(y+x,)=I1_, "
(1+%,)=2,.," " by, where by, by, ..., b, | EL*,
are the coefficients, and compute

— o T (i) m-1,, bj
Cy=g5 i/ (¥ z),HjZO w;.

*

2. Select a tuple (A,, B,, C,;, x,,) by selecting some value
of k€[1, m]. The signer utilizes a particular k to sign all
its signatures during some time interval. After this time
interval, she discards the alias token. When the signer
exhausts all its alias tokens, she runs the Join algorithm
again to fetch new secret key, and computes corre-
sponding set of new alias tokens.

3. Compute (4, V)=H(gpk, M, x,,), and calculate their
images in G |, such that u=y(0) and v=1p(¥).

4. Select a, p,

R

6<—Z;,

and compute T,=u®, T,=Av%, T,=B,f, and T,=C,;°.
5. Compute the signature of knowledge (SPK) which is
expressed as follows.

V:SPK{ (a5|?)>65'xik1AilBi’ Cik):
Ty =u% T,=Ap°, Ty=B FT,=C,?,

i

e(Ai, B) = (g1, g2), (g1, B1) = e(gl g™, Ca)}(M)

=SPK{(e, B, 8, xy, Ai, B, Cig):
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T1=ue(T5 T3)=e(, T3)ae(g1,g2)5,

I=e(gy, T5)%e(p(w g™ T P}(M). )]

This SPK is computed with the Fiat-Shamir heuristic
method using the following steps.
(a) Select binding factors

R
o ¥, Yo 2,
and compute
Ry =" Ry=e(v,T5) "e(g,82)"",

Ry=e(gy, T5)e(yp(wy)g " Ty) 7P,

(b) Compute the challenge ¢ as

Q)

c=H(gpk M %3, 71, 15,15, T4 R, Ro.R3).

(c) Compute responses, s,
cd.
The output of this algorithm is the signature

=T+, Sp=tp+cfl, and sy=ry+

0=, Ty, 15, T3, 74,C, 50, S, S)-

M

Verify(gpk, RC, o, M): The verification algorithm takes as
input the group public key gpk, the revocation code RC, the
signature o, and the message M. Using the following sub-
algorithms, it verifies two things: (1) whether the signature
was honestly generated, and (2) revocation status of the alias
token used to generate the signature. If both the sub-
algorithms output valid, this algorithm outputs valid; other-
wise it outputs invalid.

SignCheck(gpk, o, M): With the group public key gpk
and a purported signature o on a message M, this
sub-algorithm outputs valid if o is an honest signature
on M. This is checked using the following steps.

1. Compute (4, ¥)=H, (gpk, M, x,,), and calculate their
images in G |, i.e., u=y(0) and v=p(¥).
2. Retrieve:

Ry=uT % Ry=e(y, T5)*%e(g1,82) (T, T5)

Ry=e(g,, T5)ep(w,)g ™ Ty) 8.

3. Check the correctness of the challenge ¢ as

C:Hz(ngMxib I.15,T15 TA:Rth:Rs)-

®)

If the above equation holds, this sub-algorithm outputs
valid; otherwise, it outputs invalid.

RevCheck(RC, o): The inputs to the revocation check
algorithm are the alias token x,, embedded in the
signature o, and the revocation code, RC. The purpose
of this sub-algorithm is to check whether the alias
token, x,,, has been revoked or not, which is accom-
plished using the following steps.

1. Map x,; to the corresponding alias code s, i.e.,
compute s, =F (x,;,), where s,; is a column vector of
length 1 of samples of +1s and -1s.

2. Compute the value of the decision variable,

1
z= 75?,1 RC,

where s,,” is the transpose of s,
3. Output invalid if z=T, where T is a pre-determined
threshold; otherwise, output valid.
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Revoke(grt;, RC): The inputs to this algorithm are the
revocation token of the signer, grt,, and the current revoca-
tion code, RC. To revoke signer i, the group manager
updates the revocation code using the following steps.
1. Map each x,,Egrt, to the corresponding alias code s,
i.e., compute s,=F (x,,) fork=1,2 ... m

2. Compute the code, s, by adding all the unique alias
codes corresponding to the revoked alias tokens such
that s,=%,_," s,,.

3. Update the revocation code as RC=RC+s,.

Open(reg, o, M): With the valid signature o on message
M, the actual signer of the signature is identified using the
following step.

4. Search the registration list reg to find signer i that has

generated signature o with the alias token x,;.
5. If a match is successfully found, output i; otherwise,
output 0 to indicate a failure.
5. Security Analysis
5.1 Signature and Identity Correctness

It can be shown that GSPR satisfies the signature correct-
ness and the identity correctness properties. Security proofs
for these properties can be constructed.

5.2 Anonymity

THEOREM 1 In the random oracle model, suppose an
algorithm A breaks the anonymity of GSPR with advan-
tage ¢ after q, hash queries and q signing queries, then there
exists an algorithm B that breaks the DLIN assumption with
the advantage (1/n°-qsq./p)e/2.

This theorem prescribes that GSPR satisfies the anonym-
ity property in the random oracle model when the DLIN
assumption is presumed. One core technique used in the
proof of anonymity is the randomness of (i, ¥) such that the
challenger can backpatch the hash oracle. GSPR also pre-
serves the randomness of (i, V). Hence, the same technique
and the proof construction method can be employed to prove
Theorem 1.

Note that within a time interval, the signer uses the same
alias token to generate all the signatures, and hence those
signatures can be linked to the same signer. However, the
signer utilizes different alias tokens in different time inter-
vals, and thus non-linkability is preserved between different
time intervals. For many applications, the duration of each
time interval is small (e.g., 1 minute in vehicular networks),
resulting in only a few linkable signatures.

In GSPR, all of the previous signatures generated using a
revoked private key can be linked together using the implicit
tracing algorithm. Most other VLR schemes share this
drawback. This drawback can be mitigated in a number of
ways, including the use of time-stamped parameters or the
use of accumulators. However, these methods incur addi-
tional overhead that may be unacceptable in many applica-
tions.

5.3 Traceability

A traceability property of GSPR is considered in Theorem
2, Lemma 1 can be utilized as a proof.

LEMMA 1 Suppose an algorithm A which is given an
instance (3,, &, &', . . .. &' ) and n tuples (A, x,,,
Xims + - - Xi)» Vi €[1, 1], where X, €Z*, Vi €[l, n], ke[1,
m], §,EG,, §,=(8,) and A=g, ity , forges a tuple
(A., B., C., x.) for some A €G,, B. E(Gz, C.€G, and
X.=X;;, Vi€[1, 1], kE[1, m] such that e(A., B.)= e(gl,gz) and
e(8,, B.)—=e(g,"g,”, C.), then there exists an algorithm
B solving q-BSDH problem where q=(n+1)m.

PROOF. Algorithm B is given a q-BSDH 1nstance rep-
resented by (g,, w,, Wy, . . ., W), where w=g, "Yig[o, q).
B sets g=(n+1)m. The obj ectlve of B isto produce a BSDH
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pair (e(g,, 2,)"*?, d) for some dEZ * . Forthis, B creates
the following framework to interact with A .
Setup: B does the following.
6. Select nm values:

R
X Z,

Vi €[1, n], k€1, m].

7. Define m~IL,_,™ (y+x,), and f(y)=IL_," n=2, " oy,
where o, @, . . ., @, EZ *, are the coefficients of the
polynomial f With variable y.

8. Compute g,=g" k fH "

9. Compute W,=g, ij,O”’"

10. Define f,(y)=t (y)/n
Qg Apy « - -
polynomial f

11. Calculate Di:gz

aj and &, =y (8,).
%, YkE[0, m].

i, 2T ajy’ where
EZ] *, are the coeflicients of the

]+k

1/“i:g2ﬁ(Y):Hj:O”m_m Wjaf, and Alqp

®).
12. Send (A X;1s Xizs « -+ 5 X;0), V1 €[], 0], and (§,, W,
Wis e ooy W) t0 A.

Note that with this information, <4 or B can compute nm
tuples (A, B C x,,) such that e(A,, B,)=e(g,. &,) and e(§,,
B)=e(8,'8,™, k) in the following manner.

13. Define w=I1,_ " (y+X,)=2,_" by, where by, b, . .

.b,EZ*, are the coeflicients of the polynomial defined
by m,.

14. Compute B,=§,™=TI,_," .

15. Define where L (y)=md (% )=10 "
(r+x,)=2, " cy’ where ¢y, ¢, .. .c, | EZ*, are the
coeflicients of the polynomial f,.

16. Compute C,,=g,*"=3_ """ %,

m—1

W,
Also, A or B can compute nm BSDH pairs (B, x,) in
the following manner.

~zk:e (/I ézk):e (€182 V),

Output: A outputs a forged tuple (A., B., C., x.), for
some A., €G , B., €G 2 C*, €G , and X.=x,, Vi €[1, n],
ke, m], such that e (A., B.)= e(gl, g,) and e(g,, B.)—e
@8, C).

Having received the forged tuple from A, B generates a
new BSDH pair in the following manner.

17. Define E'=e(A., C.)=e(g,,

e(®,, g, )ﬂv)/(vww)

18. Rewrite f(y) as f(y) (y+x.)f (y)+d. for some polyno-

mial fy)=%,,"""" dy, and constant d.EZ *,. This
means that E'*e(g 25 )fd(y>+d )

19. Compute gzﬁ(Y):szo"’" bwd

& N1/ (o)
gz) (Y+xm) —

, and

B (E’/ (g gfd(y)))l/d* _ 8(571, gz)l/()“rx*)

d,
=e(g, gz)f()’)/()“rx*) =e(gy, gz)fd()'H /(4

20. Calculate E.=(F/e(g,, g5/7) " =e(g,, g,)" .

Hence, B returns the tuple (E., X.) as the solution to the
submitted instance of the BSDH problem.

THEOREM 2 In the random oracle model, suppose an
algorithm A breaks the traceability of GSPR with advan-
tage &, after q; hash queries and qs signature queries, then
there exists an algorithm B that breaks the q-BSDH
assumption with advantage (€/n -1/p)*/16q,,, where q=(n+
Dm.

PROOF. The following is an interaction between A and
B.
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Setup: B is given a bilinear group pair (G,, G,) with
respective generators g, and g, Bis also given
(Wos Wy, . . . W,,), Where w,= g2¢, Vke[0, m]. Further, B is
given (A,, y,), Vi €[1, n]. For each i, either s =1 indicating
that a valid key pair (4A,, y,) generated using equations (1)
and (2) is known, or s,=0 indicating that A, corresponding to
y, is not known. Run A giving it gpk=(g,, W, W, ... W,,)
and y,, Vi €[1, n]. Note that y, can be used to generate the
alias tokens using equation (1).

Queries: A can query B about the following.

Hash queries: A queries the hash functions H, and H,,

and B responds with random values with consistency.

Signing queries: A requests a signature of member i on

message M. If s,=1, B responds with the signature o
using Sign algorithm with the private key (A,, y,). If
s,=0, B selects x,;, o, B, 8 to compute T, T,, T; and T,
and the SPK V as in equation (5). If the hash function
causes a collision, B declares failure and aborts; oth-
erwise, B responds with o=(x,;, T}, T, T3, T4, ¢, s,
Sp, 85). Assume that the signing queries related to a
signer does not exceed m.

Corruption queries: A requests the secret key of member
i. If s=1, B adds i to U, and responds with (A,, y,);
otherwise, B declares failure and aborts. With (A, y,),
A can compute alias tokens x,,, Yk&[1, m] using
equation (1), B, using equation (3), and C,;, YkE[1, m]
using equation (4).

Output: Finally, if A is successful, it outputs a forged
signature o* on a message M* using tuple (A,, B,, C,,,
X,%). If B fails to find the signer i' in U, it outputs o,
otherwise, B identifies some i'=i. If 5,0, B outputs 0*;
otherwise, B declares failure and aborts.

With the above framework, there can be two types of
forger algorithms. Type I forger forges a signature of the
member who is different from all i €[1, n]. Type II forger
forges a signature of the member i €[ 1, n] whose corruption
is not requested. B treats these two types of forgers differ-
ently. Note that usmg the techmque of Lemma 1, with a
q-BSDH instance (81, 80 857, .. 8,7), B can obtaln (81, 22>
el ..., g and (g-m) BSDH pairs. Moreover, any
BSDH pair besides these (q—-m) pairs can be transformed
into a solution to the original q-BSDH instance which means
that the g-BSDH assumption is broken.

Type 1 Forger: From an instance of (n+1)m-BSDH,
B obtains (g, 8 ', . . ., '), and n tuples (A,
X;15 X35 - - - X;,,)- From these n tuples, B obtains n valid key
pairs (Ai, y,) by setting H_(y,, k)=x,;, ¥i €[1, n], k€[1, m].
B applies the above framework to A . The framework
succeeds whenever A succeeds. Hence, B obtains the Type
1 forgery with the probability e.

Type 11 Forger From an instance of nm-BSDH, B obtains
(811 800 8- . &), and n=1 tuples (A, X,p, Xyps - - - X;0)-
From these n-1 tuples, B obtains n—1 valid key pairs (A,, y,)
by setting H_(y,, k)=x,, ¥i €[1, n-1], k&[1, m]. These n-1
pairs (A,, y,) are distributed among n indices. B sets s,~0 for
the unfilled entry at random index i'. B selects

R
Ay —GCy,

and

R
y‘-<—Z;.
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B applies the framework to A . The framework succeeds
only if A never requests the corruption of member 1', but
forges a signature that traces to A,. The value of 1' is
independent of the views of A, and hence B obtains the
Type 1I forgery with probability at least e/n.

B obtains another BSDH pair beyond the given nm
BSDH pairs using the framework with Type 1 or Type 11
forger in the following manner, contradicting the BSDH
assumption. B rewinds the framework to obtain two forged
signatures on the same message, where the commitments are
the same, but the challenges and responses are different. The
probability of success in achieving this is at least (g'-1/p)*/
16q,; by the forking lemma, where €' is the probability that
the framework on each forger succeeds. B extracts (A., B.,
C., X.) encoded in the forged signatures. Further, B obtains
a BSDH pair from (A., B., C., X.) using the technique
discussed in Lemma 1. The framework is successful only if
the extracted BSDH pair is not among the BSDH pairs
created by B. Therefore, B obtains a new BSDH pair with
the probability (e'-1/p)*/16 .

Hence, it is shown that B can solve the (n+1)m-BSDH
instance with probability (e-1/p)*/16 q,, using Type I forger,
and the nm-BSDH instance with probability (e/n-1/p)*/16
q; using Type II forger. Therefore, the pessimistic Type 11
forger proves the theorem. This implies that traceability is
satisfied in GSPR in the random oracle model under the
BSDH assumption.

5.4 Revocation Correctness

In the following discussion, the correctness of the results
generated by the revocation check algorithm, RevCheck is
discussed. The revocation correctness depends on the cross
correlation property of the alias codes since the revocation
code is generated by summing over multiple alias codes.
Here, two categories of codes from the existing literature can
be potentially used as alias codes—orthogonal codes and
non-return-to-zero (NRZ) based random codes.

A new type of codes can be referred to as piecewise-
orthogonal codes which can be used as alias codes. With the
use of piecewise-orthogonal codes, GSPR’s RevCheck algo-
rithm does not determine the revocation status of a private
key with certainty, but instead with a certain probability. If
an alias token has been revoked and its corresponding alias
code has been included in the revocation code, then Rev-
Check’s result is guaranteed to be correct. However, there is
a possibility of a false alarm. Using an iterative algorithm,
this probability can be decreased iteratively, a la the well-
known Miller-Rabin primality test algorithm. The details of
the revocation check procedure and iterative algorithm are
given in Section 5.4.1.

For analyzing the revocation correctness, define two
hypotheses—H,,:x,, has been revoked, and H,:x,, has not
been revoked. Here, the probability of false negative/dis-
missal, P, can be defined as the probability of erroneously
determining that a given alias token has not been revoked
when it has been revoked by the group manager. In Rev-
Check, P, is equal to the probability of z<t when Hj, is true.
Also, probability of false positive/alarm, P, can be defined
as the probability of the verifier erroneously determining
that a given alias token has been revoked when it has not
been revoked by the group manager. In RevCheck, P, is
equal to the probability of z=t when H, is true. Further,
suppose that the number of revoked private keys is repre-
sented by n,, and each alias token (or each element in Z *))
is represented by b,=160 bits. Note that the number of
revoked alias tokens (i.e., m'n,) is equal to the number of
revoked alias codes, and the length of the revocation code is
equal to the length of an alias code (i.e., 1).
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Orthogonal Codes: Orthogonal or Walsh codes consist of
codes with zero cross-correlation. When the two codes are
the same, the value of the cross-correlation is 1; otherwise,
it is 0. If these codes are used as alias codes, the threshold
can be set to T=1, and the revocation check procedure with
P70 and P,,=0 can be achieved. This means that if orthogo-
nal codes are used as alias codes, GSPR would be able to
satisfy the revocation correctness property with certainty.
However, there are only 1 unique orthogonal codes of length
1 samples. This means that if orthogonal codes are indexed
using the alias token x,, which is represented by b,=160 bits,
then the length of each alias code has to be 1=2"%° samples
long! Hence, it is prohibitively costly in terms of storage and
processing overhead to use completely orthogonal codes as
alias codes.

NRZ based Random Codes: Random codes can be gen-
erated by NRZ encoding of a random sequence of bits,
which means bit 0 is mapped to sample -1, and bit 1 is
mapped to sample +1. As a result, the number of unique
random codes with length b, is given by 2% 1f the random
codes are utilized as alias codes, an alias code can be
generated with length, 1=b,=160 samples, by NRZ encoding
of an alias token, x,;,. The use of random codes allows us to
use compact alias codes. However, note that use of random
codes results in P;,>0. As a result of the random nature of the
codes, there are inevitable false dismissals, which means
there is significant possibility that the verifier may not be
able to detect a revoked private key.

A type of codes that can be referred to as piecewise-
orthogonal codes is described herein. The use of piecewise-
orthogonal codes enables us to create alias codes that are
compact and have a property—viz., P,~=0 and P,>0. In
other words, for piecewise-orthogonal codes, the probability
of false dismissals is guaranteed to be zero, although the
probability of false alarms is non-zero. Note that to ensure
security, P,=0 is more important than P,=0. The former
implies that a revoked alias token can detected by RevCheck
with 100% certainty. The next subsection provides details on
how piecewise-orthogonal codes are used in probabilistic
revocation.

5.4.1 Revocation with Piecewise-Orthogonal Codes

GSPR can utilize piecewise-orthogonal codes as alias
codes for achieving probabilistic revocation. The piecewise-
orthogonal codes are generated by concatenating multiple
segments where each segment is an orthogonal code. To
generate a piecewise-orthogonal code as an alias code, an
alias token is divided into multiple segments, and an
orthogonal code is generated corresponding to each seg-
ment. These orthogonal codes corresponding to the seg-
ments of the alias token are concatenated to form the
complete alias code. In this way, the alias codes are piece-
wise-orthogonal.

Specifically, a set of 2% orthogonal codes, denoted by C
is generated where each orthogonal code is of length 2%.
Note that an orthogonal code in €, can be retrieved using a
b,-bit index. Further, each alias token x,, €Z *, of b, bits is
divided into d segments each of length b, bits, such that
d-b,=b,<(d+1)-b,. The segments of the alias token x,, are
represented by x, , VjE[1, d]. Further, VjE[1, d], x,, is
utilized to generate b.-bit index so that an orthogonal code
S, is chosen from C . Finally, all the d orthogonal codes,
S VjE€[1, d], are concatenated to generate the alias code
s, The length of the resulting revocation code is I=d-2”«.
The group manager declares the two public parameters C
and F, such that the set of all possible alias codes C ,=C S‘;:
and the mapping function F:Z *,—C , is defined as seg-
ment-wise indexing as discussed above.
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When the revocation code is generated using the Revoke
algorithm, each segment of the revocation code is generated
by summation of the corresponding segments of the revoked
alias codes. Hence, the generated revocation code also has d
segments, represented by RC,, Vj&[1, d]. Note that due to
the property of orthogonal codes, the cross-correlation of a
revocation code’s segment and an orthogonal code results in
one of the two values—(1) O if the revocation code was not
generated by the orthogonal code, or (2) an integral multiple
of 1 if the revocation code was generated by the orthogonal
code. Hence, the threshold T is set to 1.

Having received a signature with alias token x,,, the
verifier can run RevCheck for each of the d segments.
However, to minimize the computational overhead, the
verifier only runs RevCheck for a segments. This means that
RevCheck can be re-organized as follows.

RevCheck(RC, o)

21. Set j=1.

22. Generate a bg-bit index from X, ,

orthogonal code S, ; from C .

23. Compute

and select an

1 T
z= ZTxSik'j.RCj.

If z=1, output invalid; otherwise, output valid, and exit.
24. Set j=j+1. If j=a, go to Step 2; otherwise, exit.

TABLE 1

The alias and revocation codes used in the example.

s) +1 -1 -1 +1 +1 -1 -1 +1
S5 +1 +1 -1 -1 +1 + -1 -1
S3 +1 -1 +1 -1 +1 -1 41 -1
S4 +1 -1 -1 +1 +1 -1 41 -1
S5 +1 -1 -1 +1 +1 + -1 -1
RC=5s,+s, +2 0 -2 0 +2 0 -2 0

5.4.2 Example

The revocation check procedure in GSPR can be
described through an example. The alias codes and the
revocation code used in the example are given in Table 1.
Assume that there are five 4-bit alias tokens represented by
x,={1111}, x,={1010}, x;={0101}, x,={1101} and
x5={1110}. Also, assume that C , contains 2°=4 orthogonal
codes. The group manager generates the alias codes s, s,,
3, 84, and ss—corresponding t0 X, X,, X3, X, and X,
respectively—by concatenating two orthogonal codes of
length 4 samples. Suppose that the group manager needs to
revoke alias tokens x; and x,. Hence, the group manager
computes the sample-by-sample addition of the alias codes
s, and s,. The resulting vector is the revocation code,
represented by RC. The group manager provides the verifier
with RC. In this scenario, if the verifier receives a signature
with the alias token x,, he runs two iterations of RevCheck.
In the first iteration, the verifier computes the cross corre-
lation between the first segments, i.e., first 4 samples of s,
and RC, represented by s, ; and RC, respectively. In the
second iteration, the verifier computes the cross correlation
between the second segments, i.e., second 4 samples of s,
and RC represented by s, , and RC,, respectively. The cross
correlation is computed by sample-by-sample multiplication
of the alias code and the revocation code followed by the
addition of all the products, and the resulting value is given
by Y s,,7RC,=1, and % s, ,”;"RC,=1. Since the cross
correlation of both the segments resulted in the value of 1,
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the verifier concludes that x; has been revoked. Using the
same procedure, the verifier concludes that x, has also been
revoked. On the other hand, if the verifier receives a signa-
ture with the alias token x5, he will conclude that the alias
token is valid because the cross correlation of s, | with RC,
is 0. Here, the RevCheck algorithm exits after the first
iteration. Now, let us take a look at x,. The cross correlation
of's, , and s, , with RC, and RC, results in the values 1 and
0, respectively. Here, if the verifier makes a decision after
only computing the correlation of the first segment, to
decrease its computational overhead, he erroneously deter-
mines that x, has been revoked because this is an instance of
a false alarm. However, after computing the correlation of
the second segment, the verifier can conclude with absolute
confidence that x, has not been revoked because P,=0.
Lastly, the cross correlation of s5 ; and s5, with RC; and
RC, results in 1 and 1, respectively. Hence, if the verifier
receives a signature with an alias token x5, he erroneously
concludes that x5 has been revoked.
5.4.3 Discussions on the False Alarm Probability

With the proposed piecewise-orthogonal codes, the prob-
ability of false dismissal is zero, i.e., P,~0. However, after
checking a segments, the upper bound of the probability of
false alarm (P,,) can be computed to be

(mn,)*2br= _p, n‘,’ZbP —mn, ©)
fa = = 2

a
t

2°p — mn, 2°p — mn,

where the ratio of the number of revoked alias tokens and the
length of one segment of the revocation code is represented
by n/=mn,/2%. Forn,<I, P, decreases by increasing a which
is the maximum number of iterations or segments processed
by the verifier before making a revocation status decision.
Here, the revoked alias tokens have unique segments, and
hence the above equation gives the upper bound of P,,. Note
that each alias token of b, bits is unique; however each
segment of an alias token, which is b, bits long, is not
necessarily unique.

If the verifier runs RevCheck for a iterations, then the
length of the alias code that has to be processed is 1 =a-2”,
and Pfazntl’"’/ ™ Note that the computational overhead for
RevCheck is directly proportional to 1,. There is a tradeoff
between P, and RevCheck’s computational cost, and there
are a number of different strategies for making an advanta-
geous tradeoff. One possible strategy is to construct the
revocation code in such a manner that minimizes P, for a
given value of 1. and for a given number of revoked alias
tokens (i.e., mn,) by selecting an optimal value of b,. Once
the optimal value of b, is computed, the corresponding n, can
be computed using the relation n,=mn,/2”. This value can be
readily derived as n,~exp(-1)=~0.3679. However, mn, and 2°
are both integer values, and hence to minimize P, the group
manager can select b, such that

exp(—1) L
2 T Dbs

< 3exp(-1)/2.

As discussed above, the number of iterations (i.e., a) and
the number of bits in each segment of an alias token (i.e., b,)
are adjustable parameters that directly impact P,,. FIG. 1
shows the impact of a on P, for a fixed value of b;=19. This
figure suggests that the verifier can decrease Py, at the cost
of increasing the computational cost of performing Rev-
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Check. FIG. 2 illustrates the impact of b, on P, when the
verifier utilizes all of the d segments of the revocation code
to check the revocation status of an alias token. In both
figures, the values m=120 and b, =160 bits are fixed.
5.4.4 Security Implications of the Alias Codes

There is a one-to-one mapping between an alias code and
an alias token defined by F_. Although the alias codes have
a non-random structure, the alias tokens, which are embed-
ded in the signature, are random numbers under the random
oracle model. Hence, the use of alias codes should have no
impact on the traceability property of GSPR, which is
defined by Theorem 2.

TABLE 2
Comparison of computationally expensive operations.
Exp. In Exp. In
G /G, G, Bilinear map
GSPR Sign 6 4 3
SignCheck 2 5 4
RevCheck 0 0 0
BS Sign 5 3 3
SignCheck 4 4 4
RevCheck 0 0 n, + 1
BCNSW Sign 3 1 1
SignCheck 0 2 5
RevCheck 0 0 n,
TABLE 3
Comparison of computational overhead (ms).
Sign SignCheck RevCheck
GSPR 14.952 9.124 5.819
BS 15.417 15378 1628.729
BCNSW 3.242 8.302 1592.019
TABLE 4
Comparison of number of elements communicated
in the considered scenarios.
Elem. In Elem. in
Z* G,/G, Int.
GSPR manager-signer 1 1 0
signer-verifier 5 4 0
manager-verifier 0 0 1
BS manager-signer 1 1 0
signer-verifier 5 2 0
manager-verifier 0 n, 0
BCNSW manager-signer 1 3 0
signer-verifier 2 3 0
manager-verifier 0 n, 0
TABLE 5
Comparison of communication overhead (bits).
manager- signer- manager-
signer verifier verifier
GSPR 672 2848 5.03 - 107
BS 672 1824 5.24 - 10°
BCNSW 1696 1856 5.24 - 10°

6. Performance Evaluation
This section evaluates the computational and communi-
cation overhead of GSPR, and compare GSPR’s perfor-
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mance with two schemes in the prior art—the Boneh-
Shacham (BS) scheme and the Bichsel-Camenisch-Neven-
Smart-Warinschi (BCNSW) scheme. BS and BCNSW are
two of the most practical group signature schemes in terms
of being scalable to large networks. If the isomorphism is an
identity map, G ;=G ,. Assume symmetric 80-bit security
level, which provides approximately the same level of
security as an RSA signature with a modulus size of 1024
bits. In an elliptic curve cryptosystem, to achieve the same
security strength, the length of an element in Z *, and G
should be approximately equal to 160 bits. Specifically, one
can utilize the “Type A” internal described in pairing-based
cryptography (PBC) library. The internal is constructed on a
supersingular curve of the form y*=x>+x over the field F  for
some prime q=3mod4. In the internal, an element in Z *, is
denoted by 160 bits, and an element in G ; or G, is denoted
by 512 bits. For this example of GSPR, assume that the
group manager distributes 120 alias tokens for each signer,
and the probability of false alarm should be less than 0.01.
6.1 Computational Overhead

This section, compares a computational cost of GSPR
with two benchmarks—viz., BS and BCNSW. This section
focuses on three specific algorithms: Sign (signature gen-
eration algorithm), SignCheck (signature correctness check-
ing algorithm), and RevCheck (revocation status checking
algorithm). These algorithms can be executed on-line in real
time, and moreover they should be performed by the signer
and the verifier, who have limited computational capabilities
compared to the group manager.

Firstly, a computationally expensive operation is consid-
ered—i.e., exponentiation (Exp.) in G,, G,, or G, and
bilinear mapping. Here, since G =G ,, the application of
isomorphism is not considered. Table 2 provides the number
of operations for each of the three algorithms for GSPR, BS
and BCNSW. Note that in GSPR, the operations in Step 1 in
the Sign algorithm are independent of the message to be
signed or the random parameters, and hence, they can be
pre-computed. Also, \(w,) and e(g,, g,) can also be pre-
computed. Further, in the RevCheck algorithm in GSPR, the
computational cost of computing the cross-correlation
between a revocation code and an alias code is 1 integer
additions since the length of the revocation code is 1 with
each element being an integer, and the alias code is a vector
of +1s and -1s.

By using the PBC library, implement the three algorithms
for GSPR, BS and BCNSW, and measure their running time
on a PC platform with Intel(R) Core(TM)2 Duo CPU E8400
@ 3 GHz. The measurements are obtained by averaging over
1000 runs of each algorithm. Table 3 provides their running
times on the PC platform. Here, assume that the number of
revoked private keys is 1024, i.e, n,=1024. From Table 3,
observe that there is no significant difference in the compu-
tation times of the three schemes when comparing their
performance with respect to Sign and SignCheck. However,
the difference between GSPR and the other two schemes in
terms of the computational cost of RevCheck is significant.
GSPR’s RevCheck algorithm is more than two orders of
magnitude more efficient than those of the other two
schemes. Hence, when the total signature verification time is
considered, which includes the time used to perform Sign-
Check as well as RevCheck, the running time in GSPR can
be less than that in BS and BCNSW.

FIG. 3 shows the computation time to verify a signature
versus the number of revoked private keys. With only a few
thousand revoked private keys, the computation times for
BS and BCNSW quickly grow to several seconds for veri-
fying only one signature. In contrast, the growth rate of
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GSPR’s computation time is lower, which is primarily due
to the computational efficiency advantage of GSPR’s Rev-
Check.

6.2 Communication Overhead

Consider the three communication scenarios—between
the group manager and the signer (manager-signer), between
the signer and the verifier (signer-verifier), and between the
group manager and the verifier (manager-verifier). In the
first scenario, while joining the group, the group manager
sends a secret key to the signer. In the second scenario, the
signer sends a signature to the verifier. Lastly, in the third
scenario, the group manager sends a revocation list/code to
the verifier. Table 4 provides the number of elements (Elem.)
of Z*,, G, G, or integers (Int.) communicated in each of
the three scenarios for GSPR, BS and BCNSW. Note that in
GSPR, the alias tokens are generated by the signer using the
secret key obtained from the group manager, and hence they
do not need to be communicated.

Table 5 shows the communication overhead of the three
schemes for the three scenarios, assuming n,=1024. Results
from the table indicate that GSPR’s communication over-
head is two orders of magnitude larger than those of the
other two schemes when considering the manager-verifier
scenario. Hence, GSPR makes an advantageous trade-off
between computational overhead and communication over-
head. This trade-off is advantageous because reducing the
computational overhead is often more important than reduc-
ing the communication overhead when considering scalabil-
ity. Verifying a signature (which includes checking the
revocation status of the private key) is an inherently on-line
task which should be performed in real time, and it can be
the primary performance bottleneck when the scheme is
deployed in a large network. However, the greater commu-
nication overhead incurred by GSPR in the third (i.e.,
manager-verifier) scenario can be readily mitigated by pre-
fetching the revocation code before the verifier needs to
verify a given signature.

In FIG. 4, four schemes in terms of the communication
overhead to transmit the revocation list (for GSPR, it is the
revocation code) are compared. The top-most curve is the
curve for a pseudonym-based signature (PS) with Elliptic
Curve Digital Signature Algorithm (ECDSA) with the pub-
lic key size of 192 bits to achieve the 80-bit security level.
For PS, assume that the number of pseudonyms allotted to
each signer is 120, and the group manager publishes public-
key certificates of all the revoked pseudonyms in the revo-
cation list. In FIG. 4, although the communication overhead
of GSPR is higher as compared to BS and BCNSW, it is still
lower than PS.

7. Use of GSPR in DSRC Applications

To illustrate the practical advantages of GSPR, this sec-
tion compares the signature verification performance of
GSPR with two benchmarks (i.e., BS and BCNSW) for a
specific type of applications, viz., vehicular network
(VANET) safety applications. Since the allocation of the
Dedicated Short-Range Communications (DSRC) spectrum
in the 5.9 GHz band by the Federal Communications Com-
mission (FCC), the automotive industry and the other stake-
holders have been actively developing DSRC technologies,
with a particular focus on vehicular safety applications.

In a typical safety application, each vehicle broadcasts
beacon messages that contain information for safety, such as
speed, direction of movement, acceleration, etc. The beacon
messages should be authenticated, but, at the same time, the
privacy of the transmitting vehicle’s driver should be pro-
tected. Without such protection, adversaries can use the
beacon messages to track the driver’s movement or, worse
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yet, use them for more nefarious purposes. Hence, safety
applications is one important application domain for pri-
vacy-preserving authentication techniques.

Typically, beacon messages are broadcast in intervals of
100 ms. In high vehicular density scenarios, a given vehicle
is expected to receive a large number of beacon messages
within a broadcast interval, and each message should be
authenticated before the arrival of the next message from the
same transmitter. [f the authentication of the current message
cannot be finished before the arrival of the next message,
then the current message can be discarded because it is
considered to contain “stale” information. To measure the
impact of the computational cost of signature verification on
the performance of safety applications employ the average
message loss ratio, which is defined as the ratio between the
number of beacon messages discarded due to signature
verification latency and the total number of beacon messages
received by a particular vehicle in a broadcast interval of 100
ms.

This simulation of GSPR assumes that each vehicle is on
the road for 2 hours per day, and replaces its current alias
token with a new one every minute, which equates to 120
alias tokens per day. The simulation results are shown in
FIG. 5 assuming n,=64. From this figure, GSPR’s signature
verification procedure is efficient enough to ensure accept-
able performance for safety applications under reasonably-
favorable conditions. In contrast, results suggest that the
computational burden of the verification procedures used by
BS and BCNSW is too heavy for their use in vehicular safety
applications.

As described herein, a novel privacy-preserving authen-
tication scheme called Group Signatures with Probabilistic
Revocation (GSPR) is provided. Revocation is the primary
performance bottleneck of modern group signature schemes
and that existing schemes do not scale well to large networks
because of high computational cost of their revocation check
procedures. By using the novel concept of probabilistic
revocation, GSPR manages to significantly reduce the com-
putational burden of the revocation check procedure at the
cost of increased communication overhead. The negative
impact of the increased communication overhead can be
mitigated by pre-fetching the revocation code from the
group manager before signature verification.

Therefore, the following is claimed:

1. A computer-implemented method, comprising:

receiving, by at least one computing device, a signature

including an alias token;

mapping, by the at least one computing device, the alias

token to an alias code comprising a plurality of
orthogonal alias code segments;

receiving, by the at least one computing device, a revo-

cation code comprising a plurality of revocation code
segments, each of the revocation code segments cor-
responding to a respective one of the alias code seg-
ments, wherein the revocation code comprises a sum of
at least one revoked alias code;

probabilistically determining, by at least one computing

device, a revocation status of the alias token based at
least in part on at least one of the alias code segments
and a corresponding at least one of the revocation code
segments, wherein probabilistically determining the
revocation status includes cross-correlating a subset of
the alias code segments and a corresponding subset of
the revocation code segments over a number of itera-
tions, each iteration including a cross-correlation of one
of the alias code segments and a corresponding one of
the revocation code segments; and
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accept or discard a message based on the revocation

status.

2. The computer-implemented method of claim 1,
wherein the revocation code is received over a network.

3. The method of claim 1, wherein probabilistically deter-
mining the revocation status can result in a false positive
revocation of the alias token but cannot result in a false
negative revocation of the alias token.

4. The computer-implemented method of claim 1,
wherein the alias token comprises a plurality of alias token
segments and a length of each of the revocation code
segments is based at least in part on a number of bits of a
respective one of the alias token segments.

5. The computer-implemented method of claim 4,
wherein a length of each of the revocation code segments is
based at least in part on a number of bits of a respective one
of the alias token segments.

6. The method of claim 1, wherein the at least one revoked
alias code corresponds to at least one revoked alias token.

7. The computer-implemented method of claim 1,
wherein the alias token is one of a plurality of alias tokens
corresponding to a secret key.

8. The computer-implemented method of claim 1,
wherein each of the alias code and the at least one revoked
alias code is composed of elements selected from the group
consisting of positive one and negative one.

9. The computer-implemented method of claim 1, further
comprising authenticating the message in response to the
revocation status indicating that the alias token is not
revoked.

10. A system, comprising:

at least one computing device; and

a memory comprising computer-readable instructions

stored thereon that, when executed by the at least one

computing device, direct the at least one computing

device to at least:

determine a set of orthogonal codes;

determine that an alias token is a revoked alias token,
the alias token being separable into a plurality of
alias token segments of a predetermined number of
bits;

map the each of the alias token segments to a respective
one of a plurality of alias code segments based at
least in part on the set of orthogonal codes;

generate an alias code by concatenating the alias code
segments;

calculate a revocation code as a sum of a plurality of
revoked alias codes including the alias code, the
revocation code comprising a plurality of revocation
code segments, each of the revocation code segments
corresponding to a respective one of the alias code
segments; and

wherein a computing device accepts or discards a
message based on a cross-correlation of a subset of
the alias code segments and a corresponding subset
of the revocation code segments over a number of
iterations, each iteration including a cross-correla-
tion of one of the alias code segments and a corre-
sponding one of the revocation code segments.

11. The system of claim 10, wherein when executed the
instructions further cause the at least one computing device
to at least provide access to the revocation code via a
network.
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12. The system of claim 10, wherein when executed the
instructions further cause the at least one computing device
to at least generate a plurality of alias tokens, a secret key
corresponding to the alias tokens, and a revocation token
corresponding to the alias tokens.
13. The system of claim 12, wherein the alias tokens, the
secret key, and the revocation token are generated in
response to a request to join a group, and when executed the
instructions further cause the at least one computing device
to at least include an entry in a registration list corresponding
to the group.
14. The system of claim 13, wherein when executed the
instructions further cause the at least one computing device
to at least identify a signer that initiated the request using the
entry.
15. The system of claim 10, wherein determining the set
of orthogonal codes includes determining a number of the
orthogonal codes in the set as two to a power of the
predetermined number of bits.
16. A system comprising:
at least one computing device;
a memory comprising computer-readable instructions
stored thereon that, when executed by the at least one
computing device, direct the at least one computing
device to at least:
receive a signature including an alias token;
map the alias token to an alias code comprising a
plurality of alias code segments, each of the alias
code segments being based at least in part on a set of
orthogonal codes and corresponding to a segment of
the alias token;

receive a revocation code, wherein the revocation code
comprises a plurality of revocation code segments,
each of the revocation code segments corresponding
to a respective one of the alias code segments,
wherein the revocation code comprises a sum of at
least one revoked alias code;

determine a revocation status of the alias token based at
least in part on an iterative cross-correlation of a
respective one of a subset of the alias code segments
with a corresponding segment of the revocation code
segments over a number of iterations; and

accept or discard a message based on the revocation
status.

17. The system of claim 16, wherein the revocation code
is received over a network.

18. The system of claim 17, wherein when executed the
instructions further cause the at least one computing device
to at least perform additional cross-correlations of additional
ones of the alias code segments with additional correspond-
ing segments of the revocation code, wherein each one of the
additional cross-correlations increases a certainty of the
revocation status.

19. The system of claim 17, wherein a result of the
cross-correlation includes at least one of a certain determi-
nation that the alias token is not revoked or an uncertain
determination that the alias token is revoked.

20. The system of claim 17, wherein each of the alias code
segments is composed of elements selected from the group
consisting of positive one and negative one.
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